INEQUALITIES FOR ALGEBRAIC POLYNOMIALS ON AN ELLIPSE

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integral inequalities for algebraic polynomials

In this paper we consider two extremal problems for algebraic polynomials in L 2 metrics. (1) Let Pn be the class of all algebraic polynomials P(x) = akxk of degree at most nand IJPllda= (fIR IP(x)1 2 da(x))1/2, where da(x) is a nonnegative measure on lit We determine the best constant in the inequality lakl:::; Cn,k(da)IJPl!da-, for k = O,l, ... ,n, when P E Pn and such that = 0, k = 1, ... ,m...

متن کامل

Some Inequalities of Algebraic Polynomials

Erdös and Lorentz showed that by considering the special kind of the polynomials better bounds for the derivative are possible. Let us denote by Hn the set of all polynomials whose degree is n and whose zeros are real and lie inside [-1, 1 ). Let Pn € H„ and Pn ( 1 ) = 1 ; then the object of Theorem 1 is to obtain the best lower bound of the expression f}_{ \P¡,(x)\p dx for p > 1 and characteri...

متن کامل

Inequalities of Rafalson type for algebraic polynomials

For a positive Borel measure dμ, we prove that the constant γn(dν; dμ) := sup π∈Pn\{0} ∫∞ −∞ π (x)dν(x) ∫∞ −∞ π 2(x)dμ(x) , can be represented by the zeros of orthogonal polynomials corresponding to dμ in case (i) dν(x) = (A + Bx)dμ(x), where A + Bx is nonnegative on the support of dμ and (ii) dν(x) = (A + Bx)dμ(x), where dμ is symmetric and A + Bx is nonnegative on the support of dμ. The extre...

متن کامل

Some compact generalization of inequalities for polynomials with prescribed zeros

‎Let $p(z)=z^s h(z)$ where $h(z)$ is a polynomial‎ ‎of degree at most $n-s$ having all its zeros in $|z|geq k$ or in $|z|leq k$‎. ‎In this paper we obtain some new results about the dependence of $|p(Rz)|$ on $|p(rz)| $ for $r^2leq rRleq k^2$‎, ‎$k^2 leq rRleq R^2$ and for $Rleq r leq k$‎. ‎Our results refine and generalize certain well-known polynomial inequalities‎.

متن کامل

An Operator Product Inequalities for Polynomials

Let P (z) be a polynomial of degree n ≥ 1. In this paper we define an operator B, as following, B[P (z)] := λ 0 P (z) + λ 1 (nz 2) P ′ (z) 1! + λ 2 (nz 2) 2 P ′′ (z) 2! , where λ 0 , λ 1 and λ 2 are such that all the zeros of u(z) = λ 0 + c(n, 1)λ 1 z + c(n, 2)λ 2 z 2 lie in half plane |z| ≤ |z − n 2 | and obtain a new generalization of some well-known results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ural Mathematical Journal

سال: 2020

ISSN: 2414-3952

DOI: 10.15826/umj.2020.2.009